博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 3070 Fibonacci 矩阵快速幂模板
阅读量:6821 次
发布时间:2019-06-26

本文共 2702 字,大约阅读时间需要 9 分钟。

Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18607   Accepted: 12920

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

099999999991000000000-1

Sample Output

0346266875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

Source

 
题意:求斐波拉契数列,只不过n值很大要用到矩阵快速幂
分析:这是矩阵快速幂的入门题,借此题写下模板。
首先我们很容易的得到递推式:f(n) = f(n-1)+f(n-2)
也很容易的得到他们的矩阵式:
| f(n-1)  f(n-2)  |   x  | 1  1 |   =  | f(n)  f(n-1) |
|    0         0     |       | 1  0 |       |   0       0    |
          a                      b                  c
写下简单的推导过程:首先把右边式子写在矩阵a第一行,把右边式子可能得到的结果写在矩阵c的第一行,a和c剩下的每行都为0,接下来根据矩阵a和矩阵c写出矩阵b。
得到矩阵式后,就是简单的套用矩阵快速幂的模板了,下面是我的代码
#include #include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define debug(a) cout << #a << " " << a << endlusing namespace std;const int maxn = 1e4 + 10;const int mod = 10000;typedef long long ll;struct matrix { ll a[10][10];};matrix base, ans;matrix multip( matrix x, matrix y ) { //求c矩阵的过程 matrix tmp; for( ll i = 0; i < 2; i ++ ) { for( ll j = 0; j < 2; j ++ ) { tmp.a[i][j] = 0; for( ll k = 0; k < 2; k ++ ) { tmp.a[i][j] = ( tmp.a[i][j] + x.a[i][k] * y.a[k][j] ) % mod; } } } return tmp;}ll qow( ll a, ll b ) { //求数的快速幂,与此题无关 ll sum = 1; while( b ) { if( b&1 ) { sum = sum*a%mod; } a = a*a%mod; b /= 2; } return sum;}ll f( ll x ) { //矩阵快速幂的运算 while( x ) { if( x&1 ) { ans = multip( ans, base ); } base = multip( base, base ); x /= 2; } return ans.a[0][0];}int main() { ll n; while( cin >> n ) { if( n == -1 ) { break; } memset( ans.a, 0, sizeof(ans.a) ); //初始化a矩阵和b矩阵,根据你所得到的矩阵式初始化 memset( base.a, 0, sizeof(base.a) ); ans.a[0][0] = 1, ans.a[0][1] = 0; base.a[0][0] = base.a[0][1] = base.a[1][0] = 1; if( n == 0 ) { cout << 0 << endl; } else if( n == 1 ) { cout << 1 << endl; } else { cout << f(n-1) << endl; } } return 0;}

  

转载于:https://www.cnblogs.com/l609929321/p/9316768.html

你可能感兴趣的文章